Copied to
clipboard

G = C32xC3:C8order 216 = 23·33

Direct product of C32 and C3:C8

direct product, metabelian, supersoluble, monomial, A-group

Aliases: C32xC3:C8, C33:5C8, C32:5C24, C3:(C3xC24), C6.(C3xC12), C12.2(C3xC6), (C3xC6).8C12, C12.20(C3xS3), (C3xC12).22S3, (C3xC12).15C6, (C32xC6).3C4, C4.2(S3xC32), C2.(C32xDic3), (C32xC12).4C2, (C3xC6).12Dic3, C6.10(C3xDic3), SmallGroup(216,82)

Series: Derived Chief Lower central Upper central

C1C3 — C32xC3:C8
C1C3C6C12C3xC12C32xC12 — C32xC3:C8
C3 — C32xC3:C8
C1C3xC12

Generators and relations for C32xC3:C8
 G = < a,b,c,d | a3=b3=c3=d8=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c-1 >

Subgroups: 108 in 72 conjugacy classes, 42 normal (14 characteristic)
C1, C2, C3, C3, C3, C4, C6, C6, C6, C8, C32, C32, C32, C12, C12, C12, C3xC6, C3xC6, C3xC6, C3:C8, C24, C33, C3xC12, C3xC12, C3xC12, C32xC6, C3xC3:C8, C3xC24, C32xC12, C32xC3:C8
Quotients: C1, C2, C3, C4, S3, C6, C8, C32, Dic3, C12, C3xS3, C3xC6, C3:C8, C24, C3xDic3, C3xC12, S3xC32, C3xC3:C8, C3xC24, C32xDic3, C32xC3:C8

Smallest permutation representation of C32xC3:C8
On 72 points
Generators in S72
(1 45 13)(2 46 14)(3 47 15)(4 48 16)(5 41 9)(6 42 10)(7 43 11)(8 44 12)(17 72 58)(18 65 59)(19 66 60)(20 67 61)(21 68 62)(22 69 63)(23 70 64)(24 71 57)(25 53 39)(26 54 40)(27 55 33)(28 56 34)(29 49 35)(30 50 36)(31 51 37)(32 52 38)
(1 51 71)(2 52 72)(3 53 65)(4 54 66)(5 55 67)(6 56 68)(7 49 69)(8 50 70)(9 27 20)(10 28 21)(11 29 22)(12 30 23)(13 31 24)(14 32 17)(15 25 18)(16 26 19)(33 61 41)(34 62 42)(35 63 43)(36 64 44)(37 57 45)(38 58 46)(39 59 47)(40 60 48)
(1 51 71)(2 72 52)(3 53 65)(4 66 54)(5 55 67)(6 68 56)(7 49 69)(8 70 50)(9 27 20)(10 21 28)(11 29 22)(12 23 30)(13 31 24)(14 17 32)(15 25 18)(16 19 26)(33 61 41)(34 42 62)(35 63 43)(36 44 64)(37 57 45)(38 46 58)(39 59 47)(40 48 60)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)

G:=sub<Sym(72)| (1,45,13)(2,46,14)(3,47,15)(4,48,16)(5,41,9)(6,42,10)(7,43,11)(8,44,12)(17,72,58)(18,65,59)(19,66,60)(20,67,61)(21,68,62)(22,69,63)(23,70,64)(24,71,57)(25,53,39)(26,54,40)(27,55,33)(28,56,34)(29,49,35)(30,50,36)(31,51,37)(32,52,38), (1,51,71)(2,52,72)(3,53,65)(4,54,66)(5,55,67)(6,56,68)(7,49,69)(8,50,70)(9,27,20)(10,28,21)(11,29,22)(12,30,23)(13,31,24)(14,32,17)(15,25,18)(16,26,19)(33,61,41)(34,62,42)(35,63,43)(36,64,44)(37,57,45)(38,58,46)(39,59,47)(40,60,48), (1,51,71)(2,72,52)(3,53,65)(4,66,54)(5,55,67)(6,68,56)(7,49,69)(8,70,50)(9,27,20)(10,21,28)(11,29,22)(12,23,30)(13,31,24)(14,17,32)(15,25,18)(16,19,26)(33,61,41)(34,42,62)(35,63,43)(36,44,64)(37,57,45)(38,46,58)(39,59,47)(40,48,60), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)>;

G:=Group( (1,45,13)(2,46,14)(3,47,15)(4,48,16)(5,41,9)(6,42,10)(7,43,11)(8,44,12)(17,72,58)(18,65,59)(19,66,60)(20,67,61)(21,68,62)(22,69,63)(23,70,64)(24,71,57)(25,53,39)(26,54,40)(27,55,33)(28,56,34)(29,49,35)(30,50,36)(31,51,37)(32,52,38), (1,51,71)(2,52,72)(3,53,65)(4,54,66)(5,55,67)(6,56,68)(7,49,69)(8,50,70)(9,27,20)(10,28,21)(11,29,22)(12,30,23)(13,31,24)(14,32,17)(15,25,18)(16,26,19)(33,61,41)(34,62,42)(35,63,43)(36,64,44)(37,57,45)(38,58,46)(39,59,47)(40,60,48), (1,51,71)(2,72,52)(3,53,65)(4,66,54)(5,55,67)(6,68,56)(7,49,69)(8,70,50)(9,27,20)(10,21,28)(11,29,22)(12,23,30)(13,31,24)(14,17,32)(15,25,18)(16,19,26)(33,61,41)(34,42,62)(35,63,43)(36,44,64)(37,57,45)(38,46,58)(39,59,47)(40,48,60), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72) );

G=PermutationGroup([[(1,45,13),(2,46,14),(3,47,15),(4,48,16),(5,41,9),(6,42,10),(7,43,11),(8,44,12),(17,72,58),(18,65,59),(19,66,60),(20,67,61),(21,68,62),(22,69,63),(23,70,64),(24,71,57),(25,53,39),(26,54,40),(27,55,33),(28,56,34),(29,49,35),(30,50,36),(31,51,37),(32,52,38)], [(1,51,71),(2,52,72),(3,53,65),(4,54,66),(5,55,67),(6,56,68),(7,49,69),(8,50,70),(9,27,20),(10,28,21),(11,29,22),(12,30,23),(13,31,24),(14,32,17),(15,25,18),(16,26,19),(33,61,41),(34,62,42),(35,63,43),(36,64,44),(37,57,45),(38,58,46),(39,59,47),(40,60,48)], [(1,51,71),(2,72,52),(3,53,65),(4,66,54),(5,55,67),(6,68,56),(7,49,69),(8,70,50),(9,27,20),(10,21,28),(11,29,22),(12,23,30),(13,31,24),(14,17,32),(15,25,18),(16,19,26),(33,61,41),(34,42,62),(35,63,43),(36,44,64),(37,57,45),(38,46,58),(39,59,47),(40,48,60)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72)]])

C32xC3:C8 is a maximal subgroup of
C12.69S32  C33:8M4(2)  C33:9M4(2)  C33:8D8  C33:16SD16  C33:17SD16  C33:8Q16  S3xC3xC24

108 conjugacy classes

class 1  2 3A···3H3I···3Q4A4B6A···6H6I···6Q8A8B8C8D12A···12P12Q···12AH24A···24AF
order123···33···3446···66···6888812···1212···1224···24
size111···12···2111···12···233331···12···23···3

108 irreducible representations

dim11111111222222
type+++-
imageC1C2C3C4C6C8C12C24S3Dic3C3xS3C3:C8C3xDic3C3xC3:C8
kernelC32xC3:C8C32xC12C3xC3:C8C32xC6C3xC12C33C3xC6C32C3xC12C3xC6C12C32C6C3
# reps11828416321182816

Matrix representation of C32xC3:C8 in GL3(F73) generated by

800
010
001
,
6400
080
008
,
100
080
0064
,
2200
001
0270
G:=sub<GL(3,GF(73))| [8,0,0,0,1,0,0,0,1],[64,0,0,0,8,0,0,0,8],[1,0,0,0,8,0,0,0,64],[22,0,0,0,0,27,0,1,0] >;

C32xC3:C8 in GAP, Magma, Sage, TeX

C_3^2\times C_3\rtimes C_8
% in TeX

G:=Group("C3^2xC3:C8");
// GroupNames label

G:=SmallGroup(216,82);
// by ID

G=gap.SmallGroup(216,82);
# by ID

G:=PCGroup([6,-2,-3,-3,-2,-2,-3,108,69,5189]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^3=d^8=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<