Copied to
clipboard

G = C32×C3⋊C8order 216 = 23·33

Direct product of C32 and C3⋊C8

direct product, metabelian, supersoluble, monomial, A-group

Aliases: C32×C3⋊C8, C335C8, C325C24, C3⋊(C3×C24), C6.(C3×C12), C12.2(C3×C6), (C3×C6).8C12, C12.20(C3×S3), (C3×C12).22S3, (C3×C12).15C6, (C32×C6).3C4, C4.2(S3×C32), C2.(C32×Dic3), (C32×C12).4C2, (C3×C6).12Dic3, C6.10(C3×Dic3), SmallGroup(216,82)

Series: Derived Chief Lower central Upper central

C1C3 — C32×C3⋊C8
C1C3C6C12C3×C12C32×C12 — C32×C3⋊C8
C3 — C32×C3⋊C8
C1C3×C12

Generators and relations for C32×C3⋊C8
 G = < a,b,c,d | a3=b3=c3=d8=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c-1 >

Subgroups: 108 in 72 conjugacy classes, 42 normal (14 characteristic)
C1, C2, C3, C3, C3, C4, C6, C6, C6, C8, C32, C32, C32, C12, C12, C12, C3×C6, C3×C6, C3×C6, C3⋊C8, C24, C33, C3×C12, C3×C12, C3×C12, C32×C6, C3×C3⋊C8, C3×C24, C32×C12, C32×C3⋊C8
Quotients: C1, C2, C3, C4, S3, C6, C8, C32, Dic3, C12, C3×S3, C3×C6, C3⋊C8, C24, C3×Dic3, C3×C12, S3×C32, C3×C3⋊C8, C3×C24, C32×Dic3, C32×C3⋊C8

Smallest permutation representation of C32×C3⋊C8
On 72 points
Generators in S72
(1 45 13)(2 46 14)(3 47 15)(4 48 16)(5 41 9)(6 42 10)(7 43 11)(8 44 12)(17 72 58)(18 65 59)(19 66 60)(20 67 61)(21 68 62)(22 69 63)(23 70 64)(24 71 57)(25 53 39)(26 54 40)(27 55 33)(28 56 34)(29 49 35)(30 50 36)(31 51 37)(32 52 38)
(1 51 71)(2 52 72)(3 53 65)(4 54 66)(5 55 67)(6 56 68)(7 49 69)(8 50 70)(9 27 20)(10 28 21)(11 29 22)(12 30 23)(13 31 24)(14 32 17)(15 25 18)(16 26 19)(33 61 41)(34 62 42)(35 63 43)(36 64 44)(37 57 45)(38 58 46)(39 59 47)(40 60 48)
(1 51 71)(2 72 52)(3 53 65)(4 66 54)(5 55 67)(6 68 56)(7 49 69)(8 70 50)(9 27 20)(10 21 28)(11 29 22)(12 23 30)(13 31 24)(14 17 32)(15 25 18)(16 19 26)(33 61 41)(34 42 62)(35 63 43)(36 44 64)(37 57 45)(38 46 58)(39 59 47)(40 48 60)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)

G:=sub<Sym(72)| (1,45,13)(2,46,14)(3,47,15)(4,48,16)(5,41,9)(6,42,10)(7,43,11)(8,44,12)(17,72,58)(18,65,59)(19,66,60)(20,67,61)(21,68,62)(22,69,63)(23,70,64)(24,71,57)(25,53,39)(26,54,40)(27,55,33)(28,56,34)(29,49,35)(30,50,36)(31,51,37)(32,52,38), (1,51,71)(2,52,72)(3,53,65)(4,54,66)(5,55,67)(6,56,68)(7,49,69)(8,50,70)(9,27,20)(10,28,21)(11,29,22)(12,30,23)(13,31,24)(14,32,17)(15,25,18)(16,26,19)(33,61,41)(34,62,42)(35,63,43)(36,64,44)(37,57,45)(38,58,46)(39,59,47)(40,60,48), (1,51,71)(2,72,52)(3,53,65)(4,66,54)(5,55,67)(6,68,56)(7,49,69)(8,70,50)(9,27,20)(10,21,28)(11,29,22)(12,23,30)(13,31,24)(14,17,32)(15,25,18)(16,19,26)(33,61,41)(34,42,62)(35,63,43)(36,44,64)(37,57,45)(38,46,58)(39,59,47)(40,48,60), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)>;

G:=Group( (1,45,13)(2,46,14)(3,47,15)(4,48,16)(5,41,9)(6,42,10)(7,43,11)(8,44,12)(17,72,58)(18,65,59)(19,66,60)(20,67,61)(21,68,62)(22,69,63)(23,70,64)(24,71,57)(25,53,39)(26,54,40)(27,55,33)(28,56,34)(29,49,35)(30,50,36)(31,51,37)(32,52,38), (1,51,71)(2,52,72)(3,53,65)(4,54,66)(5,55,67)(6,56,68)(7,49,69)(8,50,70)(9,27,20)(10,28,21)(11,29,22)(12,30,23)(13,31,24)(14,32,17)(15,25,18)(16,26,19)(33,61,41)(34,62,42)(35,63,43)(36,64,44)(37,57,45)(38,58,46)(39,59,47)(40,60,48), (1,51,71)(2,72,52)(3,53,65)(4,66,54)(5,55,67)(6,68,56)(7,49,69)(8,70,50)(9,27,20)(10,21,28)(11,29,22)(12,23,30)(13,31,24)(14,17,32)(15,25,18)(16,19,26)(33,61,41)(34,42,62)(35,63,43)(36,44,64)(37,57,45)(38,46,58)(39,59,47)(40,48,60), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72) );

G=PermutationGroup([[(1,45,13),(2,46,14),(3,47,15),(4,48,16),(5,41,9),(6,42,10),(7,43,11),(8,44,12),(17,72,58),(18,65,59),(19,66,60),(20,67,61),(21,68,62),(22,69,63),(23,70,64),(24,71,57),(25,53,39),(26,54,40),(27,55,33),(28,56,34),(29,49,35),(30,50,36),(31,51,37),(32,52,38)], [(1,51,71),(2,52,72),(3,53,65),(4,54,66),(5,55,67),(6,56,68),(7,49,69),(8,50,70),(9,27,20),(10,28,21),(11,29,22),(12,30,23),(13,31,24),(14,32,17),(15,25,18),(16,26,19),(33,61,41),(34,62,42),(35,63,43),(36,64,44),(37,57,45),(38,58,46),(39,59,47),(40,60,48)], [(1,51,71),(2,72,52),(3,53,65),(4,66,54),(5,55,67),(6,68,56),(7,49,69),(8,70,50),(9,27,20),(10,21,28),(11,29,22),(12,23,30),(13,31,24),(14,17,32),(15,25,18),(16,19,26),(33,61,41),(34,42,62),(35,63,43),(36,44,64),(37,57,45),(38,46,58),(39,59,47),(40,48,60)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72)]])

C32×C3⋊C8 is a maximal subgroup of
C12.69S32  C338M4(2)  C339M4(2)  C338D8  C3316SD16  C3317SD16  C338Q16  S3×C3×C24

108 conjugacy classes

class 1  2 3A···3H3I···3Q4A4B6A···6H6I···6Q8A8B8C8D12A···12P12Q···12AH24A···24AF
order123···33···3446···66···6888812···1212···1224···24
size111···12···2111···12···233331···12···23···3

108 irreducible representations

dim11111111222222
type+++-
imageC1C2C3C4C6C8C12C24S3Dic3C3×S3C3⋊C8C3×Dic3C3×C3⋊C8
kernelC32×C3⋊C8C32×C12C3×C3⋊C8C32×C6C3×C12C33C3×C6C32C3×C12C3×C6C12C32C6C3
# reps11828416321182816

Matrix representation of C32×C3⋊C8 in GL3(𝔽73) generated by

800
010
001
,
6400
080
008
,
100
080
0064
,
2200
001
0270
G:=sub<GL(3,GF(73))| [8,0,0,0,1,0,0,0,1],[64,0,0,0,8,0,0,0,8],[1,0,0,0,8,0,0,0,64],[22,0,0,0,0,27,0,1,0] >;

C32×C3⋊C8 in GAP, Magma, Sage, TeX

C_3^2\times C_3\rtimes C_8
% in TeX

G:=Group("C3^2xC3:C8");
// GroupNames label

G:=SmallGroup(216,82);
// by ID

G=gap.SmallGroup(216,82);
# by ID

G:=PCGroup([6,-2,-3,-3,-2,-2,-3,108,69,5189]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^3=d^8=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽